
Formula/Conversion Table

Alkalinity, mg/L as
$$CaCO_3 = \frac{(Titrant\ Volume,\ mL)(Acid\ Normality)(50,000)}{Sample\ Volume,\ mL}$$

$$Amps = \frac{Volts}{Ohms}$$

Area of Circle* = (0.785)(Diameter²)

Area of Circle = (3.14)(Radius²)

Area of Cone (lateral area) = $(3.14)(Radius)\sqrt{Radius^2 + Height^2}$

Area of Cone (total surface area) = $(3.14)(Radius)(Radius + \sqrt{Radius^2 + Height^2})$

Area of Cylinder (total exterior surface area) = [End #1 SA] + [End #2 SA] + [(3.14)(Diameter)(Height or Depth)]

Where SA = surface area

Area of Rectangle* = (Length)(Width)

Area of Right Triangle* = $\frac{\text{(Base)(Height)}}{2}$

Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$

Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ The nth root of the product of n numbers

Blending or Three Normal Equation = $(C_1 \times V_1) + (C_2 \times V_2) = (C_3 \times V_3)$

Where $V_1 + V_2 = V_3$; C = concentration,

V = volume or flow;

Concentration units must match:

Volume units must match

Chemical Feed Pump Setting, % Stroke = $\frac{\text{Desired Flow}}{\text{Maximum Flow}} \times 100\%$

Chemical Feed Pump Setting, mL/min =

(Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000 gal/MG)

(Feed Chemical Density, mg/mL)(Active Chemical, % expressed as a decimal)(1,440 min/day)

Chemical Feed Pump Setting, mL/min =

(Flow, m³/day)(Dose, mg/L)

(Feed Chemical Density, g/cm³)(Active Chemical, % expressed as a decimal)(1,440 min/day)

Circumference of Circle = (3.14)(Diameter)

Composite Sample Single Portion = (Instantaneous Flow)(Total Sample Volume) (Number of Portions)(Average Flow)

CT Calculation = (Disinfectant Residual Concentration, mg/L)(Time, min)

Degrees Celsius = $\frac{(°F - 32)}{1 \ \Omega}$

Degrees Fahrenheit = $(^{\circ}C)(1.8) + 32$

Detention Time = $\frac{\text{Volume}}{\text{Flow}}$ Units must be compatible

Dilution or Two Normal Equation = $(C_1 \times V_1) = (C_2 \times V_2)$

Where C = Concentration, V = volume or flow; Concentration units must match: Volume units must match

Electromotive Force, volts* = (Current, amps)(Resistance, ohms)

Feed Rate, Ib/day* =
$$\frac{\text{(Dosage, mg/L)(Flow, MGD)(8.34 lb/gal)}}{\text{Purity, } \% \text{ expressed as a decimal}}$$

Feed Rate, kg/day* =
$$\frac{\text{(Dosage, mg/L)(Flow Rate, m}^3/\text{day})}{\text{(Purity, % expressed as a decimal)(1,000)}}$$

Feed Rate (Fluoride), lb/day =

(Available Fluoride Ion, % expressed as a decimal)(Purity, % expressed as a decimal)

Feed Rate (Fluoride), kg/day =

(Available Fluoride Ion, % expressed as a decimal)(Purity, % expressed as a decimal)(1,000)

Feed Rate (Fluoride Saturator), gpm =
$$\frac{\text{(Plant capacity, gpm)(Dosage, mg/L)}}{18,000 \text{ mg/L}}$$

Feed Rate (Fluoride Saturator), Lpm =
$$\frac{\text{(Plant capacity, Lpm)(Dosage, mg/L)}}{18,000 \text{ mg/L}}$$

Filter Backwash Rise Rate, in/min =
$$\frac{\text{(Backwash Rate, gpm/ft}^2)(12 \text{ in/ft})}{7.48 \text{ gal/ft}^3}$$

Filter Backwash Rise Rate, cm/min =
$$\frac{\text{Water Rise, cm}}{\text{Time, min}}$$

Filter Drop Test Velocity, ft/min =
$$\frac{\text{Water Drop, ft}}{\text{Time of Drop, min}}$$

Filter Drop Test Velocity, m/min = $\frac{\text{Water Drop, m}}{\text{Time of Drop, min}}$

Filter Loading Rate, gpm/ft² = $\frac{\text{Flow, gpm}}{\text{Filter area, ft}^2}$

Filter Loading Rate, L/sec/m² = $\frac{\text{Flow, L/sec}}{\text{Filter area, m}^2}$

Filter Yield, $lb/hr/ft^2 = \frac{(Solids Loading, lb/day)(Recovery, % expressed as a decimal)}{(Filter Operation, hr/day)(Area, ft^2)}$

Filter Yield, kg/hr/m² = $\frac{\text{(Solids Concentration, \% expressed as a decimal)(Sludge Feed Rate, L/hr)(10)}}{\text{(Surface Area of Filter, m}^2)}$

Flow Rate, ft³/sec* = (Area, ft²)(Velocity, ft/sec)

Flow Rate, m³/sec* = (Area, m²)(Velocity, m/sec)

Force, Ib* = (Pressure, psi)(Area, in²)

Force, newtons* = (Pressure, pascals)(Area, m²)

Hardness, as mg CaCO₃/L = $\frac{\text{(Titrant Volume, mL)(1,000)}}{\text{Sample Volume, mL}}$

Only when the titration factor is 1.00 of EDTA

Horsepower, Brake, hp = $\frac{(Flow, gpm)(Head, ft)}{(3,960)(Pump Efficiency, % expressed as a decimal)}$

Horsepower, Brake, kW = $\frac{(9.8)(\text{Flow, m}^3/\text{sec})(\text{Head, m})}{(\text{Pump Efficiency, % expressed as a decimal})}$

Horsepower, Motor, hp =

(3,960)(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal)

Horsepower, Motor, kW =

(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal)

Horsepower, Water, hp =
$$\frac{\text{(Flow, gpm)(Head, ft)}}{3,960}$$

Horsepower, Water, kW = (9.8)(Flow, m³/sec)(Head, m)

Hydraulic Loading Rate,
$$gpd/ft^2 = \frac{Total Flow Applied, gpd}{Area, ft^2}$$

Hydraulic Loading Rate,
$$m^3/day/m^2 = \frac{Total Flow Applied, m^3/day}{Area, m^2}$$

Hypochlorite Strength, % =
$$\frac{\text{Chlorine Required, lb}}{\text{(Hypochlorite Solution Needed, gal)(8.34 lb/gal)}} \times 100\%$$

Hypochlorite Strength, % =
$$\frac{\text{(Chlorine Required, kg)(100)}}{\text{(Hypochlorite Solution Needed, kg)}}$$

Langelier Saturation Index = pH - pHs

Leakage, gpd =
$$\frac{\text{Volume, gal}}{\text{Time, days}}$$

Leakage, Lpd =
$$\frac{\text{Volume, L}}{\text{Time, days}}$$

Loading Rate, lb/day* = (Flow, MGD)(Concentration, mg/L)(8.34 lb/gal)

Loading Rate, kg/day* =
$$\frac{\text{(Flow, m}^3/\text{day)}(\text{Concentration, mg/L})}{1,000}$$

Mass, **Ib*** = (Volume, MG)(Concentration, mg/L)(8.34 lb/gal)

Mass,
$$kg^* = \frac{(Volume, m^3)(Concentration, mg/L)}{1,000}$$

Milliequivalent = (mL)(Normality)

$$Molarity = \frac{Moles of Solute}{Liters of Solution}$$

Number of Equivalent Weights =
$$\frac{\text{Total Weight}}{\text{Equivalent Weight}}$$

Number of Moles =
$$\frac{\text{Total Weight}}{\text{Molecular Weight}}$$

Power, kW =
$$\frac{(Flow, L/sec)(Head, m)(9.8)}{1,000}$$

Reduction in Flow,
$$\% = \frac{\text{(Original Flow-Reduced Flow)(100\%)}}{\text{Original Flow}}$$

Removal, % =
$$\frac{\text{In - Out}}{\text{In}} \times 100\%$$

Slope, % =
$$\frac{\text{Drop or Rise}}{\text{Distance}} \times 100\%$$

Solids, mg/L =
$$\frac{(\text{Dry Solids, g})(1,000,000)}{\text{Sample Volume, mL}}$$

Solids Concentration,
$$mg/L = \frac{W eight, mg}{Volume, L}$$

Specific Gravity =
$$\frac{\text{Specific Weight of Substance, lb/gal}}{8.34 \text{ lb/gal}}$$

Specific Gravity =
$$\frac{\text{Specific Weight of Substance, kg/L}}{1.0, \text{ kg/L}}$$

Surface Loading Rate or Surface Overflow Rate,
$$gpd/ft^2 = \frac{Flow, gpd}{Area, ft^2}$$

Surface Loading Rate or Surface Overflow Rate, Lpd/m² =
$$\frac{\text{Flow, Lpd}}{\text{Area, m}^2}$$

Threshold Odor Number =
$$\frac{A+B}{A}$$

Where A = volume of odor causing sample, B = volume of odor free water

Velocity, ft/sec =
$$\frac{\text{Flow Rate, ft}^3/\text{sec}}{\text{Area, ft}^2}$$

Velocity, ft/sec =
$$\frac{\text{Distance, ft}}{\text{Time, sec}}$$

Velocity, m/sec =
$$\frac{\text{Flow Rate, m}^3/\text{sec}}{\text{Area, m}^2}$$

Velocity, m/sec =
$$\frac{\text{Distance, m}}{\text{Time, sec}}$$

Volume of Cone* = $(1/3)(0.785)(Diameter^2)(Height)$

Volume of Cylinder* = (0.785)(Diameter²)(Height)

Volume of Rectangular Tank* = (Length)(Width)(Height)

Water Use, Lpcd =
$$\frac{\text{Volume of Water Produced, Lpd}}{\text{Population}}$$

Watts (AC circuit) = (Volts)(Amps)(Power Factor)

Watts (DC circuit) = (Volts)(Amps)

Weir Overflow Rate,
$$gpd/ft = \frac{Flow, gpd}{Weir Length, ft}$$

Weir Overflow Rate, Lpd/m =
$$\frac{\text{Flow, Lpd}}{\text{Weir Length, m}}$$

Wire-to-Water Efficiency, % = $\frac{\text{Water hp}}{\text{Motor hp}} \times 100\%$

Wire-to-Water Efficiency, % = $\frac{(\text{Flow, gpm})(\text{Total Dynamic Head, ft})(0.746 \text{ kW/hp})(100\%)}{(3,960)(\text{Electrical Demand, kW})}$

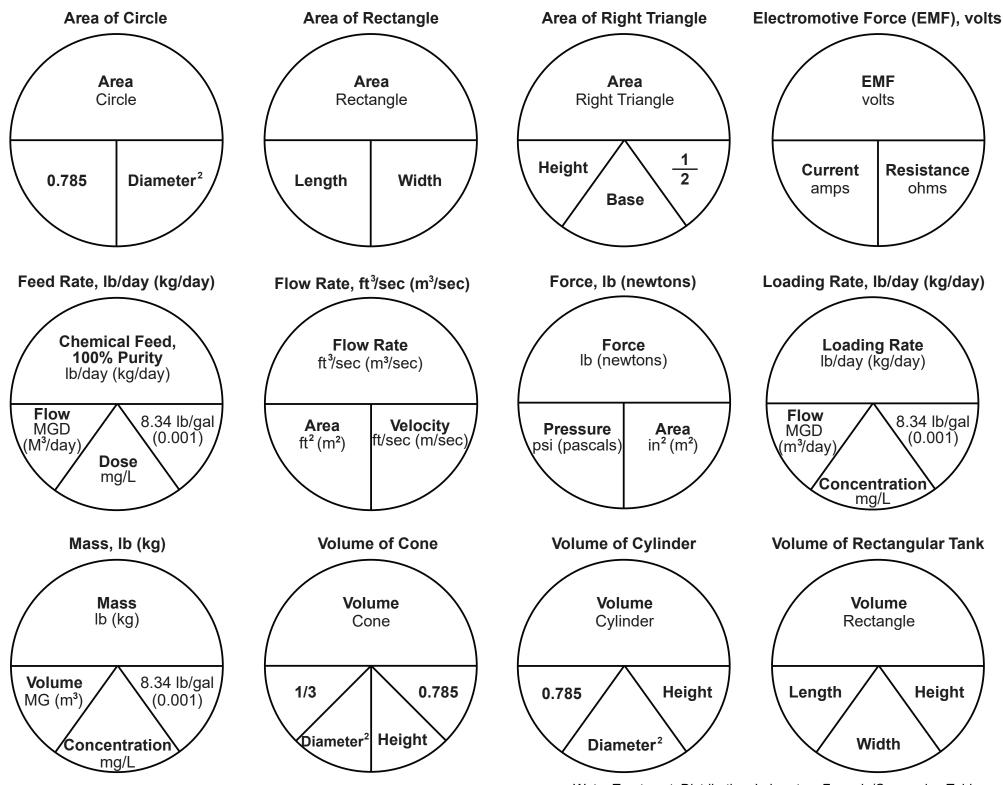
Abbreviations

CCelsius	Lpm liters per minute
cfscubic feet per second	LSI Langelier Saturation Index
cmcentimeters	m meters
DO dissolved oxygen	mg milligrams
EMF electromotive force	MG million gallons
FFahrenheit	MGD million US gallons per day
ftfeet	min minutes
ft lbfoot-pound	mL milliliters
g grams	ML million liters
galUS gallons	MLD million liters per day
gfdUS gallons flux per day	ORP oxidation reduction potential
gpcd US gallons per capita per day	ppb parts per billion
gpdUS gallons per day	ppm parts per million
gpg grains per US gallon	psi pounds per square inch
gpmUS gallons per minute	Q flow
hphorsepower	RPM revolutions per minute
hrhours	SDI sludge density index
ininches	sec second
kg kilograms	SSsettleable solids
km kilometers	TOCtotal organic carbon
kPakilopascals	TSS total suspended solids
kW kilowatts	TTHM total trihalomethanes
kWhkilowatt-hours	VS volatile solids
Lliters	W watts
lb pounds	yd yards
Lpcd liters per capita per day	yr year
Lpd liters per day	

Conversion Factors

1 acre=	= 43,560 ft ² = 4.046.9 m ²
1 acre foot of water= 1 cubic foot of water=	: 326,000 gal : 7.48 gal
1 cubic foot per second =	: 62.4 lb : 0.646 MGD : 448.8 gpm
1 cubic meter of water =	O.
1 foot=	
1 foot of water 1 gallon (US)	•
1 grain per US gallon= 1 hectare=	: 17.1 mg/L
1 horsepower =	: 0.746 kW : 746 W
=	= 33,000 ft lb/min

1 inch	.= 2.54 cm
1 liter per second	.= 0.0864 MLD
1 meter of water	.= 9.8 kPa
1 metric ton	.= 2,205 lb
	= 1,000 kg
1 mile	.= 5,280 ft
	= 1.61 km
1 million US gallons per	
	= 1.55 ft ³ /sec
1 pound	.= 0.454 kg
1 pound per square inch	.= 2.31 ft of water
	= 6.89 kPa
1 square meter	.= 1.19 yd ²
1 ton	
1%	.= 10,000 mg/L
π or pi	.= 3.14


Alkalinity Relationships

All Alkalinity expressed as mg/L as CaCO3 • P – phenolphthalein alkalinity • T – total alkalinity

Result of Titration	Hydroxide Alkalinity	Carbonate Alkalinity	Bicarbonate Concentration
P = 0	0	0	Т
P < ½T	0	2P	T – 2P
P = ½T	0	2P	0
P > ½T	2P – T	2(T – P)	0
P = T	Т	0	0

*Pie Wheels

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. (m²).

